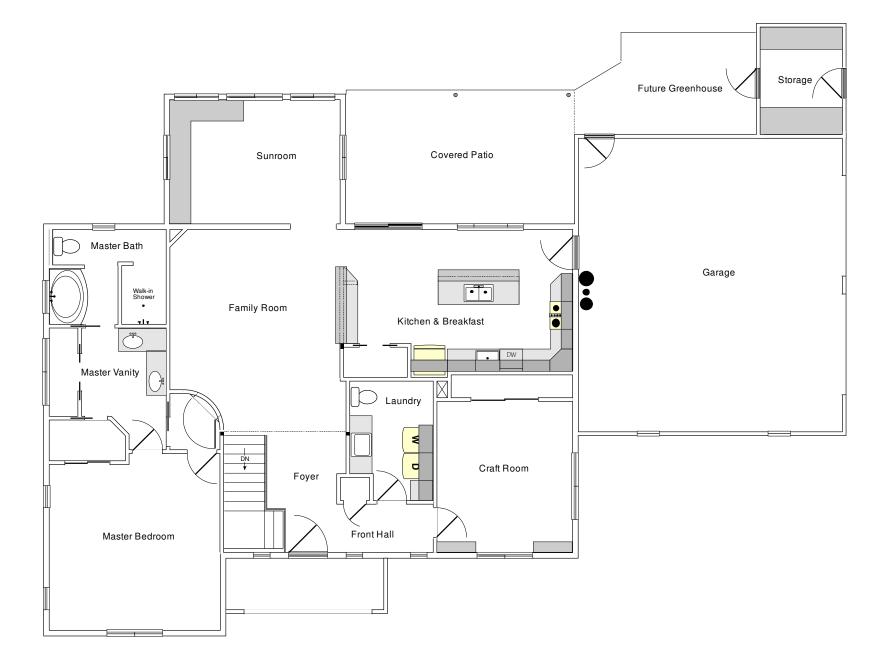
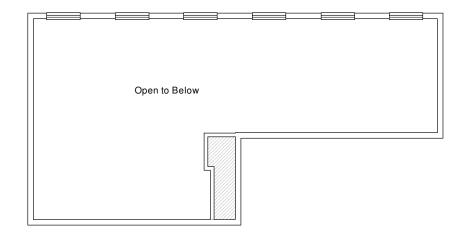
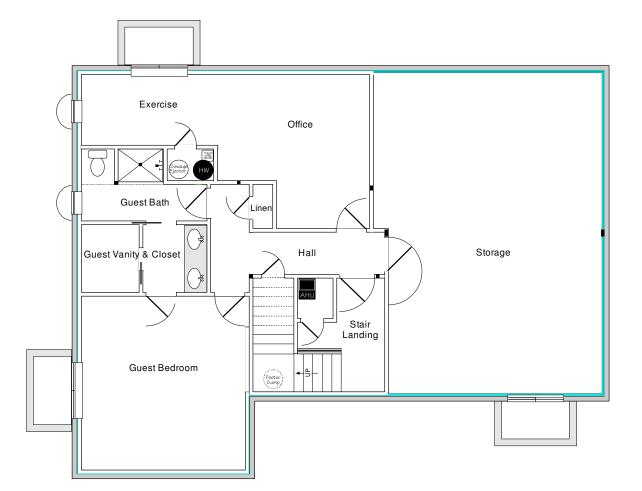


Net Positive Plus 25%.... On Less Than 4kW of PV!


David Butler Optimal Building Systems Dry Climate Forum February 5, 2024


• Site selection


- north-facing lot: ideal for most home designs

- Site selection
 - north-facing lot: ideal for most home designs
- Passive solar design concepts
 - classic passive solar: incompatible with low-load construction...
 - except for engineered overhangs on all south-facing glass...
 - and strategic room layout

- Site selection
 - north-facing lot: ideal for most home designs
- Passive solar design concepts
 - classic passive solar: incompatible with low-load construction...
 - except for engineered overhangs on all south-facing glass...
 - and strategic room layout
- Modeling
 - energy modeling: a design aid, not an end
 - master strengths & weaknesses of modeling tools
 - compare modeling results with actual performance data!
 - modeling results should inform, not control the design
 - heat pumps are notoriously difficult to model in new construction

Whetstone Green Enclosure Specifications

- Overall design
 - 3,300 sq.ft. conditioned floor area, 4 bedrooms, 2.5 baths
 - single level ranch over a basement (fully below grade)
 - flat roof with overhangs (unique), non-vented truss space
 - many advantages with basement design:
 - ideal location for mechanicals
 - ample storage (no attic storage with flat roof)
 - suspended ceiling provides easy access to wires, pipes & ducts
 - minimal actionable load (47% conditioned floor area below grade)

Whetstone Green Enclosure Specifications

- Overall design
 - 3,300 sq.ft. conditioned floor area, 4 bedrooms, 2.5 baths
 - single level ranch over a basement (fully below grade)
 - flat roof with overhangs (unique), non-vented truss space
 - many advantages with basement design:
 - ideal location for mechanicals
 - ample storage (no attic storage with flat roof)
 - suspended ceiling provides easy access to wires, pipes & ducts
 - minimal actionable load (47% conditioned floor area below grade)
- Enclosure, lighting & appliance specifications
 - 2x6 above-grade walls 24-oc, R-23 BIBS + R-4 exterior EPS
 - 2x4 below-grade walls 24-oc, R-13 batts + R-6 continuous EPS
 - 6" ocSPF in floor truss band (~R-22), 9" ocSPF on roof deck (~R-33)
 - vinyl windows with 0.28 u-factor, 0.19 SHGC
 - air tightness tested out @ 0.52 ACH50
 - EnergyStar appliances, conventional electric smoothtop range
 - strategically located electric water heater, structured plumbing
 - LED lighting throughout

Blown-in Blanket System[™] (BIBS)

Open-cell spray polyurethane foam (ocSPF)

Below-grade walls: R-13 + R-2 continuous EPS 6" ocSPF in truss band (R-22)

Exterior below-grade walls Ames BlueMax[™] liquid rubber + R-4 EPS

Exterior above-grade wall insulation: R-4 EPS

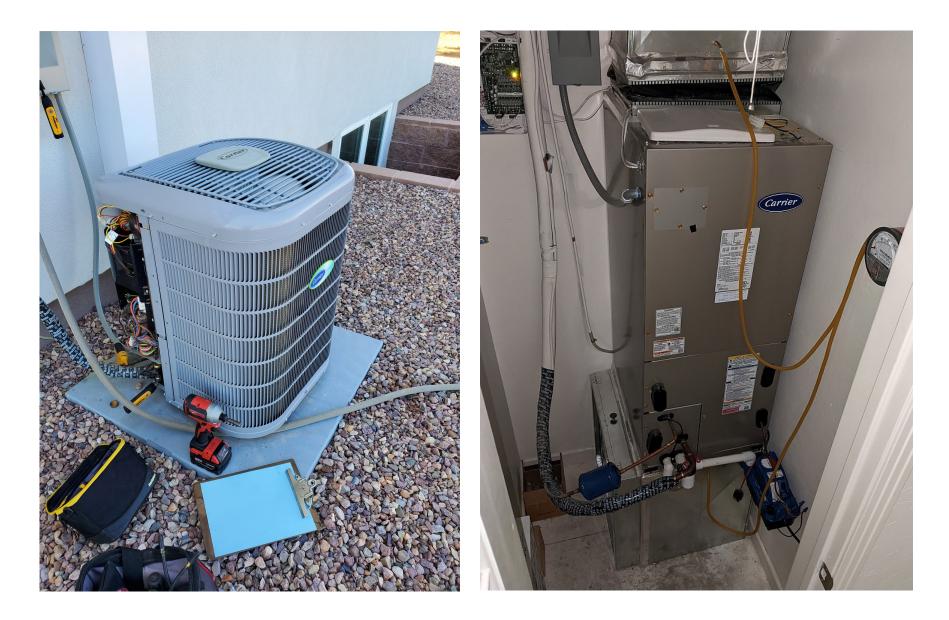
High reflectance & emissivity roof coating Henry 687 – 3 yr SR 0.80, TE 0.90

Whetstone Green Modeling Results

- Outdoor design conditions for nearby Sierra Vista:
 - Summer 93F, Winter 28F
 - 1,710 CDD, 2,370 HDD (Fort Huachuca)
- Indoor design conditions
 - Summer 78F daytime, 73F nighttime (Master BR zone only)
 - Winter 69F daytime, 66F nighttime
 - Note: basement zone rarely has actionable heat or cooling call

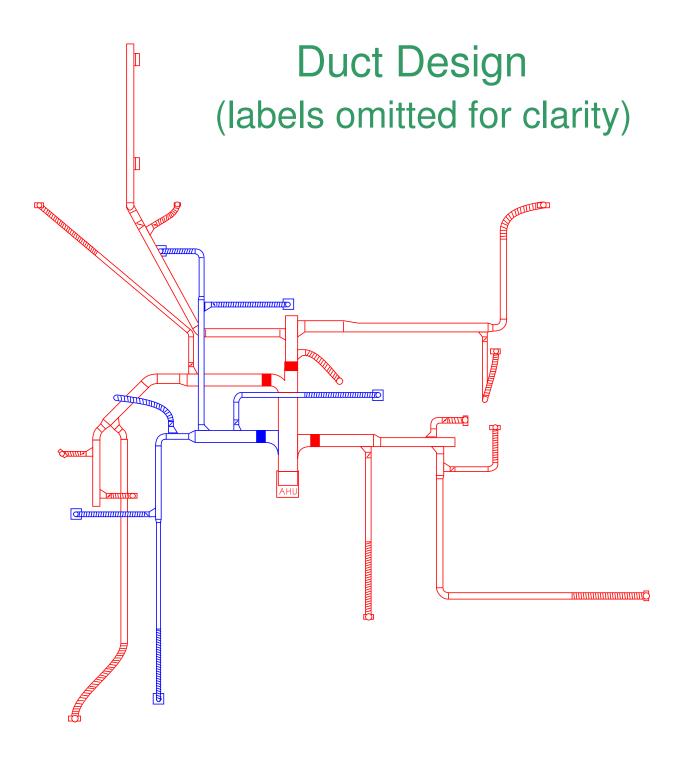
Whetstone Green Modeling Results

- Outdoor design conditions for nearby Sierra Vista:
 - Summer 93F, Winter 28F
 - 1,710 CDD, 2,370 HDD (Fort Huachuca)
- Indoor design conditions
 - Summer 78F daytime, 73F nighttime (Master BR zone only)
 - Winter 69F daytime, 66F nighttime
 - Note: basement zone rarely has actionable heat or cooling call
 - 2 retired occupants
- Design loads @ 93F, 28F
 - Cooling 7,676 Btuh, Heating 14,593 Btuh
- Design loads @ 100F, 17F
 - Cooling 9,480 Btuh, Heating 18,608 Btuh
 - For high performance homes, MJ overstates design heat loads by up to 100%, depending on climate...
 - MJ intentionally ignores internal loads, solar heat gains and thermal mass. These factors loom large in low-energy homes!


Whetstone Green Modeling Results

- Outdoor design conditions for nearby Sierra Vista:
 - Summer 93F, Winter 28F
 - 1,710 CDD, 2,370 HDD (Fort Huachuca)
- Indoor design conditions
 - Summer 78F daytime, 73F nighttime (Master BR zone only)
 - Winter 69F daytime, 66F nighttime
 - Note: basement zone rarely has actionable heat or cooling call
 - 2 retired occupants
- Design loads @ 93F, 28F
 - Cooling 7,676 Btuh, Heating 14,593 Btuh
- Design loads @ 100F, 17F
 - Cooling 9,480 Btuh, Heating 18,608 Btuh
 - For high performance homes, MJ overstates design heat loads by up to 100%, depending on climate...
 - MJ intentionally ignores internal loads, solar heat gains and thermal mass. These factors loom large in low-energy homes!
- Energy Model
 - 6,900 kWh/year (all-electric except outdoor grill)

Whetstone Green Mechanical Specifications


- 1-ton heat pump
 - Carrier 18VS 5-stage heat pump (25VNA813)
 - variable fan coil (FE4ANF002)
 - 3 kW supplemental heat kit (10k Btuh)
 - Infinity zone control (4 zones, load diversity)
 - AHRI Ratings
 - cooling capacity: 13,000 Btuh @ 95F
 - seasonal cooling efficiency: 17 SEER
 - heating capacity: 17,000 @ 47F, 11,200 @ 17F
 - heating efficiency: ???

Mechanical equipment

Whetstone Green Mechanical Specifications

- 1-ton heat pump
 - Carrier 18VS 5-stage heat pump (25VNA813)
 - variable fan coil (FE4ANF002)
 - 3 kW supplemental heat kit (10k Btuh capacity)
 - Infinity zone control (4 zones, load diversity)
 - AHRI Ratings
 - cooling capacity: 13,000 Btuh @ 95F
 - seasonal cooling efficiency: 17 SEER
 - heating capacity: 17,000 @ 47F, 11,200 @ 17F
 - heating efficiency: ???
- Ducts fully inside conditioned space
 - supply ducts routed through floor trusses
 - ductless return ideal for basement homes
 - Duct Blaster[®] test '4th ring club' candidate

Whetstone Green Mechanical Specifications

- 1-ton heat pump
 - Carrier 18VS 5-stage heat pump (25VNA813)
 - variable fan coil (FE4ANF002)
 - 3 kW supplemental heat kit (10k Btuh capacity)
 - Infinity zone control (4 zones, load diversity)
 - AHRI Ratings
 - cooling capacity: 13,000 Btuh @ 95F
 - seasonal cooling efficiency: 17 SEER
 - heating capacity: 17,000 @ 47F, 11,200 @ 17F
 - heating efficiency: ???
- Ducts fully inside conditioned space
 - supply ducts routed through floor trusses
 - ductless return ideal for basement homes
 - Duct Blaster® test '4th ring club' candidate
- Built-in space heaters
 - 134W embedded floor heat at desk seating area
 - 300W convection radiator in Master Bath

Embedded floor heat at desk (40" x 40")

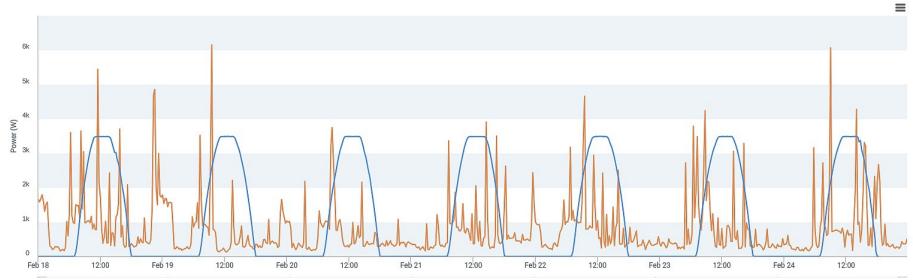
Whetstone Green Ventilation Specifications

- Master bedroom economizer
 - Fantech PrioAir 6EC (ECM motor with PWM or 0-10mA input)
 - EWC URD MA-ND5 motorized damper
 - 'free' cooling, ideal for arid climate with high daily temp. swings
 - computerized control (single-board CPU, ODT & IDT sensors)
 - provides roughly a 20% reduction in annual cooling load
 - whole-house CO2 dilution via AHU 'continuous fan' @ low speed
 - **TBD:** add CO2 input to CPU to minimize 'unfavorable' ventilation

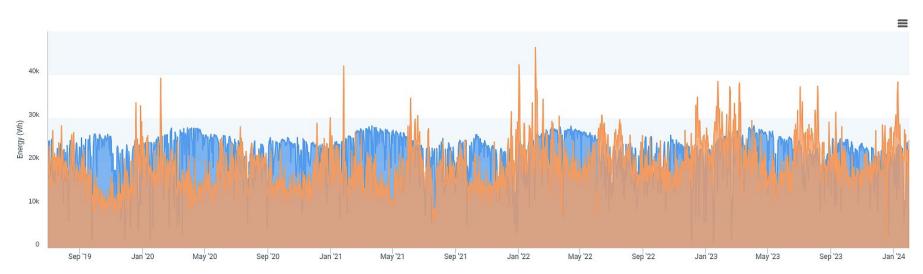
Economizer

Whetstone Green Solar Specifications

- 3840 Watt capacity
 - ground mount array out of necessity, 30° tilt, 184° azimuth
 - 12 LG 320W panels (2018)
 - 12 Enphase IQ 6+ micro-inverters
 - Enphase IQ Combiner
 - modeled solar production 7,600 kWh/yr (110% of modeled load)


- Heat pump performance at peak cooling loads
 - initially omitted high reflectance roof coating to gauge impact
 - first summer (2019), indoor temp slipped 1° when ODT > 101°
 - nighttime cool-down for Master BR (73°) took too long
 - after coatings applied, heat pump can now hold 78° up to 105° !

- Heat pump performance at peak cooling loads
 - initially omitted high reflectance roof coating to gauge impact
 - first summer (2019), indoor temp slipped 1° when ODT > 101°
 - nighttime cool-down for Master BR (73°) took too long
 - after coatings applied, heat pump can now hold 78° up to 105° !
- Supplemental heat consumption
 - heat pump auxiliary strips average 44 kWh/yr
 - desk embedded floor heat, Master Bath radiator avg. 30 kWh/yr


- Heat pump performance at peak cooling loads
 - initially omitted high reflectance roof coating to gauge impact
 - first summer (2019), indoor temp slipped 1° when ODT > 101°
 - nighttime cool-down for Master BR (73°) took too long
 - after coatings applied, heat pump can now hold 78° up to 105° !
- Supplemental heat consumption
 - heat pump auxiliary strips average 44 kWh/yr
 - desk embedded floor heat, Master Bath radiator avg. 30 kWh/yr
- Whole-house consumption
 - modeled: 6,900 kWh/yr
 - actual: 6,280 kWh/yr first two years (7/1/19 to 6/30/21)
 6,725 kWh/yr most recent two years (2/1/22 to 1/31/24)

- Heat pump performance at peak cooling loads
 - initially omitted high reflectance roof coating to gauge impact
 - first summer (2019), indoor temp slipped 1° when ODT > 101°
 - nighttime cool-down for Master BR (73°) took too long
 - after coatings applied, heat pump can now hold 78° up to 105° !
- Supplemental heat consumption
 - heat pump auxiliary strips average 44 kWh/yr
 - desk embedded floor heat, Master Bath radiator avg. 30 kWh/yr
- Whole-house consumption
 - modeled: 6,900 kWh/yr
 - actual: 6,280 kWh/yr first two years (7/1/19 to 6/30/21)
 6,725 kWh/yr most recent two years (2/1/22 to 1/31/24)
- Solar performance
 - modeled: 7,600 kWh/yr (1,980 kWh/kW, 110% of modeled load)
 - actual: 7,910 kWh/yr first two years, 126% of actual
 - 7,790 kWh/yr most recent two years, 116% of actual

Enphase Winter Power Graph

Enphase Lifetime Energy Graph

Thank you for listening!

Questions?